Table 4. Bond angles (°)

Cu	Мо	W-B
119.6 (3)	119.9 (3)	120.4(1)
121.1	120.9	120.5
119.3	119.2	119.0
116.3	116.7	116.6
122.0	121.7	121.7
121.7	121.5	121.7
119 (4)	113 (4)	113.6 (2)
123	122	119-1
119	115	120.8
117	121	123.1
127	122	119.1
116 (6)	117 (6)	117.8
118	122	120.1
	Cu 119.6 (3) 121.1 119.3 116.3 122.0 121.7 119 (4) 123 119 117 127 116 (6) 118	$\begin{array}{ccc} Cu & Mo \\ 119.6 (3) & 119.9 (3) \\ 121.1 & 120.9 \\ 119.3 & 119.2 \\ 116.3 & 116.7 \\ 122.0 & 121.7 \\ 121.7 & 121.5 \\ 119 (4) & 113 (4) \\ 123 & 122 \\ 119 & 115 \\ 117 & 121 \\ 127 & 122 \\ 116 (6) & 117 (6) \\ 118 & 122 \end{array}$

The bond lengths found in urea nitrate are significantly different from the distances found in the urea molecule (Worsham, Levy & Peterson, 1957). The C–O and C–N distances in urea are 1.243(6) and 1.351(7) Å respectively. It is seen that the C–O distance is lengthened and the C–N distance is shortened when the O atom becomes protonated. Another interesting feature is the large difference in the two O–C–N bond angles in the uronium ion. These effects have also been found in thiourea nitrate (Feil & Song Loong, 1968).

The nitrate group has two short and one long N–O distance. The longer one concerns the oxygen atom involved in the strongest hydrogen bond. In thiourea nitrate two long and one short N–O distance have been found. The oxygen atoms in the long bonds are involved in H-bonding, the short distance oxygen atom is not. The effect of appreciable hydrogen bonding seems to be to stretch the N–O distances.

Inspection of the Tables reveals that differences in the final position parameters of the two sets of measurements (Cu and Mo) are not significant. Comparing our results with those of Worsham & Busing shows that in general the difference in the position parameters is not significant. Differences in vibration parameters, however, are considerable. We believe the neutron results to be more reliable as it is well known that the thermal parameters in an X-ray refinement act as a dustbin for all sorts of errors: no correction for absorption, the use of the wrong atom-factors, neglect of bonding electrons *etc.* The importance of these bonding electrons was shown by the final difference-Fourier synthesis where maxima between atoms showed up clearly. In order to study this effect more carefully, we have started a structure determination at low temperatures.

We thank Dr W.R.Busing and Dr J. E. Worsham for sending a preprint of their paper on the structure of uronium nitrate.

References

- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). U.S. Atomic Energy Commission Publication ORNL-TM-305.
- DAVIES, M. & HOPKINS, L. (1957). Trans. Faraday Soc. 53, 1563.
- FEIL, D. & SONG LOONG, W. (1968). Acta Cryst. B24, 1334.
- JANSSEN, M. J. (1961). Spectrochim. Acta 17, 475.
- LONSDALE, K. (1940). Proc. Royal Soc. A 177, 272.
- WORSHAM, J. E. & BUSING, W. R. (1968). Acta Cryst. B 25, 572.
- WORSHAM, J. E., LEVY, H. A. & PETERSON, S. W. (1957). Acta Cryst. 10, 319.

Acta Cryst. (1969). B 25, 591

X-ray powder data, infrared spectra and crystal structures of some bis(selenourea)metal(II) thiocyanates.

By PAOLO DOMIANO, AMELIA GAETANI MANFREDOTTI, GIORGIO GROSSONI, MARIO NARDELLI AND MARIA ELEONORA VIDONI TANI, Istituto di Chimica Generale e Inorganica, Università degli Studi, Parma, Italy.

(Received 31 July 1968)

 $M[XC(NH_2)_2]$ (NCS)₂ with M = Co, Ni, Cd and X = S, Se, form an isostructural series. The structure is polymeric and consists of chains of coordination octahedra linked together by sulphur (or selenium) bridges; the NCS groups are terminal and *trans*-coordinated to metal through the nitrogen atoms.

As a general rule, substitution of selenium for sulphur in a family of compounds gives isostructural crystals^{*}. This is seldom observed, however, in passing from oxygen to sulphur compounds and this behaviour is accounted for by the difference of size, S and Se being smaller than O and S, and by the possibility that selenium and sulphur have to expand their valence shell, using d orbitals in bonding. According to this rule isostructurality is observed for the series of compounds of general formula $M[XC(NH_2)_2]_2(NCS)_2$ with M=Co,Ni,Cd and X=S,Se. Crystal data from a least-squares procedure applied to powder diffractometer spectra (Cu K α) are shown in Table 1 in which the interpretation of the spectra is also given.

The structure of these compounds, already determined for bis(thiourea)nickel(II) thiocyanate (Nardelli, Braibanti

^{*} One case in which this rule is not observed concerns bis(thiourea)CoCl₂ and bis(selenourea)CoCl₂ prepared by Piovesana & Furlani (1968); the first compound is monoclinic (Co[SC(NH₂)₂]₂Cl₂: $a=8\cdot13(2)$, $b=11\cdot78(1)$, $c=10\cdot79(1)$ Å, $\beta=103\cdot5^{\circ}(0\cdot1^{\circ})$, Z=4, space group: Cc; the crystals are piezo-electric) the second triclinic (Co[Se(NH₂)₂]₂Cl₂: $a=6\cdot08(1)$, $b=7\cdot22(3)$, $c=13\cdot86(2)$ Å, $\alpha=100\cdot7^{\circ}(0\cdot3^{\circ})$, $\beta=90\cdot2^{\circ}(0\cdot1^{\circ})$, $\gamma=108\cdot4^{\circ}(0\cdot1^{\circ})$, Z=2); their structures are being studied in our laboratory at present.

& Fava, 1957; Nardelli, Fava Gasparri, Giraldi Battistini & Domiano, 1966), consists of chains of coordination octahedra running along [100], the sulphur (or selenium) atoms being in the bridging positions. The metal atom is surrounded by four sulphur (or selenium) atoms from four thiourea (or selenourea) molecules and two nitrogen atoms from two thiocyanate groups in the *trans* position with

.

respect to the plane of the sulphur (or selenium) atoms.

The similarity of the infrared spectra (Table 2) confirms the isostructurality of all these compounds. The increasing of the N-C-N stretching frequency at 1469 cm⁻¹ for thiourea (at 1483 cm⁻¹ for selenourea) and the decreasing of the C=S (or the C=Se) stretching frequency at 740 cm⁻¹

Table 1. Powder diffraction data of isostructural

Ni filtered Cu Ka radiation

	С	$otu_2(NCS)_2$		Co	osu ₂ (NCS) ₂		N	litu ₂ (NCS) ₂	
	a = 3.80 b = 7.53 c = 10.13	(6) Å $\alpha =$ (8) $\beta =$ (7) $\gamma =$ $V = 277 \cdot 4 Å^3$	91·8 (8)° 99·5 (9) 103·6 (9)	a = 3.86 (b = 7.66 (c = 10.14))	(1) Å $\alpha =$ (2) $\beta =$ (2) $\gamma =$ (2) $\gamma =$ (2) $\gamma =$ (2) $\gamma =$	91·5 (1)° 103·8 (2) 105·1 (2)	a = 3.77 (2) b = 7.53 (2) c = 10.07 (2)	$ \begin{array}{l} \beta \end{pmatrix} \overset{A}{=} \alpha = \beta \\ \beta = \beta \\ \beta = 0 \\ \gamma = 10 \\ \gamma = 275 \cdot 1 \overset{A}{A^3} \end{array} $	92·6 (7)° 97·9 (9) 03·6 (9)
hkl	d_o (Å)	d_{c} (Å)	I/I_1	<i>d</i> ₀ (Å)	dc (Å)	I/I_1	<i>d</i> ₀ (Å)	dc (Å)	I/I_1
001 010 01T	9·880 7·296 6·117 5·673	9·997 7·303 6·111 5:694	100 24 16 58	9·782 7·375 6·246 5·655	9·867 7·373 6·192 5:656	100 3 1	9·858 7·260 6·084 5·673	9·856 7·309 6·119 5·683	100 10 4 5
002 012	4.966	4.984	16	4·947 4·332 3·941	4·933 4·291 3·933	34 <1 25	4·950 3·967	4·971	3
100 101 101	3.907	3.962	14	3.720	2.922	23	3.907	2.655	4
020 110 021	3·652 3·528	3·651 3·514	14	3.720	3.080	8	3.655 3.601 3.517	3.655 3.617 3.519	1
021 00 <u>3</u> 102 101	3·318 3·217	3·323 3·222	21	3.311	3·351 3·289	33	3·308 3·168 3·245	3·314 3·168 3·250	4 1 1
$01\overline{3}$ $1\overline{2}0$ $11\overline{1}$	3·116	3·113	19 40	3·143 3·048 3·024	3·115 3·050 3·011	1 8	3.109	3·110	1
110 013	2.934	2.943	6	2.918	2.904	5	2·972 2·932	{ 2.972 2.934	5 1
022 121 112 102	2.833	2.847	17	2.844	2.828	8	2·846 2·789	2·842 2·789	1
$ \begin{array}{r} 102 \\ 111 \\ 122 \\ 113 \\ 023 \\ 123 \end{array} $							2·734 2·550	{ 2·733 2·555	1
122 004 03 <u>1</u> 113	2.490	2.492	14	2.485	2.467	20	2·488 2·409	2·486 { 2·410 } 2·408	5 1
014 023 12T				2.398	2.408	2	2·366 2·321	2·366 2·324	1 1
014 104	2.301	2.307	30	2.288	2.276	12	2.298	2.300	3
$103 \\ 131 \\ 03\overline{2} \\ 12\overline{2}$	2.264	{ 2·261 { 2·261	8				2·258	2·258	1
122 121 024	2.189	2.175	8				2·180	2·179 2·067	1
123 122 005	1.994	1.994	13	1.989	1.973	11	1.989	1.988	3

for thiourea (at 732 cm^{-1} for selenourea) upon coordination are consistent with the presence of sulphur- (or selenium-) -to-metal bonds as observed by Yamaguchi, Penland, Mizushima, Lane, Curran & Quagliano (1958) and by Swaminathan & Irving (1964). The NCS frequencies indicate an isothiocyanate form for that group coordinated to the metal through the nitrogen atom (Chatt & Duncanson, 1956; Mitchell & Williams, 1960; Pecile, Giacometti & Turco, 1960; Lewis, Nyholm & Smith, 1961; Yagupsky, Negrotti & Levitus, 1965; Nardelli, Fava Gasparri, Musatti & Manfredotti, 1966).

The calculations were performed on the Olivetti Elea 6001/S computer of the Centro di Calcolo Elettronico della

thiourea (tu) and selenourea (su) metal thiocyanates

 $(\overline{\lambda} = 1.5418 \text{ Å})$. Space group $P\overline{1}$.

N	$isu_2(NCS)_2$		Co	$tu_2(NCS)_2$		Cd	$lsu_2(NCS)_2$	
a = 3.80 (1) b = 7.70 (1) c = 10.10 (1) V	$ \begin{array}{l} \dot{A} & \alpha = \gamma \\ \dot{\beta} = \gamma \\ \dot{\beta} = \gamma \\ \gamma = 10 \\ = 282 \cdot 3 \\ \dot{A}^3 \end{array} $	93·5 (1)° 97·1 (1) 04·6 (1)	a = 4.04 (1) b = 7.68 (1) c = 10.10 (1) V) Å $\alpha = 0$) $\beta = 0$) $\gamma = 10$ = 297.7 Å ³	90·8 (1)° 99·7 (1) 05·4 (1)	a = 3.97 (1) b = 7.93 (1) c = 10.09 (1) V) Å $\alpha =$) $\beta =$) $\gamma = 1$ = 301.6 Å ³	90·3 (1)° 99·0 (1) 04·0 (1)
do (Å)	dc (Å)	I/I_1	do (Å)	<i>d</i> c (Å)	I/I_1	do (Å)	dc (Å)	I/I_1
9·913 7·418	9·950 7·421	100	9·880 7·418	9·957 7·387	100	9·880 7·583	9·921 7·641	100
6.241	6.252	2	6.109	6.076	6	6.259	6.240	1
5.680	5.686	24	5.798	5.799	7	5.821	5.883	2
4.966	4.975	26	4.972	4.979	36	4.955	4.961	45
4.332	4.335	1	4 000		0	4.000		
3.953	3.956	32	4.033	4.038	9	4.028	4.050	6
3.625	3.037	1	3.83/	3.839	1			
3.715	3.711	7	5.024	3.903	1	3.800	3.820	1
			3.548	3.519	2			
3.381	3.370	< 1	3.437	3.409	$\overline{1}$			
3.317	3.317	<1	3.377	∫ 3·322	24	2,208	∫ 3·307	40
			5-522	{ 3.322	24	5.200	〕 3·308	49
3.146	3.146	2						
3.018	3.020	1				3.127	3.131	5
2.970	2.974	<1						
2.920	2.923	3	2.972	2.974	2	2.976	2.970	<1
2.852	2.843	5	2.910	2.899	1	2.960	2.941	1
2.878	2.849	2				2.913	2.902	<1
			2.815	2.822	<1	2.877	2.843	< 1
2.638	2.642	1						
2.609	2.607	2						
		-	2.548	2.531	<1	2.597	2.579	<1
2.543	2.525	1	2.402	2.490	10	2.197	2.480	24
2.407	2.400	<1	2.492	2 409	10	2 407	2'400	24
2.434	2.428	2				2.454	2.476	1
2.359	2.360	1				2.420	2•428	1
2.315	2.314	2						
2.295	2.291	10	2.324	2.325	7	2.315	2.318	3
			2.274	2.271	1			
2.190	2.177	1	2.232	2.229	1	2.248	2.243	1
2,105	2.117	~1				2.138	2.141	1
2.102	2.117	<1				2.091	2·094	<1
1.990	1.990	6	1.994	1.992	11	1.989	1.984	9
		-					•	-

1

		Table 2. Infrare	ed absorption bar	ids (cm ⁻¹) of th	hiourea (tu) and	selenourea (su)	metal thiocyanate	s in 2·5–40 µ*
Thiourea	Cotu ₂ (NCS) ₂	Nitu ₂ (NCS) ₂	Cdtu2(NCS2)	Selenourea	Cosu ₂ (NCS) ₂	Nisu ₂ (NCS) ₂	Cdsu ₂ (NCS) ₂	Assignments†
3365 s 3260 s	3395 s 3365 s 3285 s	3385 s 3355 s 3280 s	3375 s 3290 s	3330 s 3260 s	3380 <i>sh</i> 3365 <i>s</i> 3280 <i>s</i>	3375 s 3360 s 3280 s	3370 m 3285 s	NH ₂ stretch
3165 s 3095 sh	3205 s 3135 m	3200 s 3135 m	3200 s 3140 m	3150 s 3085 sh	3200 s 3130 m	3200 s 3130 m	$\frac{3190 s}{3130 m}$	
2680 w			Ma 0007	2670 w,b 2165 vw	2235 <i>vw</i>			
	2078 vs 2020 sh	2088 vs 2032 sh	2068 vs 2005 sh		2070 vs 2015 sh	2082 vs 2025 sh	$\begin{array}{c} 2058 \ vs}{1998 \ sh} \end{array}$	C-N stretch (NCS antisymmetric)
1632 sh 1589 vs	1638 vs 1621 sh	1638 vs 1621 sh	1638 vs 1630 vs	1638 <i>sh</i> 1612 <i>vs</i> 1604 <i>vs</i>	1631 <i>vs</i> 1618 <i>sh</i>	1636 vs 1618 sh	1624 <i>vs</i> 1634 <i>vs</i>	NH ₂ bending
	1508 m	1510 m	1513 m 1509 sh		1513 m 1507 sh	1516 m 1507 sh	1518 m 1508 sh	N-C-N stretch,
1469 vs 1432 s 1387 m	1441 <i>m</i> 1415 <i>m</i> 1390 <i>m</i>	1442 <i>m</i> 1414 <i>m</i> 1387 <i>m</i>	1440 <i>sh</i> 1421 <i>m</i> 1392 <i>m</i>	1483 <i>m</i> 1398 <i>s</i>	1435 w 1398 s	1440 w 1400 s	1403 s	NH2 rocking, C=S or C=Se stretch
1093 m	1102 bw	1105 ew	1110 <i>в</i> w	1090 m	1115 <i>vw</i>	1110 ем	1100 w,b	N-C-N stretch, NH ₂ rocking
	968 vw		968 ин					N-C-S bending overtone (NCS group)
	815 w	811 w	м 66L		808 w	804 w	792 w	C=S stretch (NCS symmetric)
740 m 723 m	720 sh 702 m	720 sh 699 m	725 sh 704 m	732 w	720 w	724 vw	732 w }	C=S or C=Se stretch, N-C-N stretch
634 <i>sh</i> 620 <i>m</i>	600 <i>m</i>	598 w	605 m		624 w	623 w	628 sh	
487 ° h	560 s	560 5	556 s	560 s. b	569 s	570 s	591 m 555 m }	N-C-N deformation
2 6 7 1 0 L	527 s	530 5	538 sh		519 5	522 s	522 m J	•
	482 w 471 vw 463 w	481 w 471 w 462 w	483 w 471 w 462 w		479 w 468 <i>sh</i>	480 vw 467 vw	481 w 464 w	N-C-S bending (NCS group)
408 <i>sh</i>	415 w		417 w	390 m	381 w 348 nw	381 w 330 nw	385 m	N-C-S deformation
	293 m 278 sh	303 w			291 ew	292 ew		

ared absorption hands (cm⁻¹) of thiourea (tu) and selenourea (su) metal thiocyanates in $2\cdot5-40 \ \mu^*$ Inful ¢

s=strong, m=medium, w=weak, sh=shoulder, b=broad, v=very.
Registered by means of a Perkin-Elmer infrared spectrophotometer model 457 with the KBr disk technique.
According to Yamaguchi, Penland, Mizushima, Lane, Curran & Quagliano, 1957; Kutzelnigg & Mecke, 1961; Collard-Charon & Renson, 1963.

Università di Parma. The authors are indebted to the Consiglio Nazionale delle Ricerche (Rome) for financial support.

References

- CHATT, J. & DUNCANSON, L. A. (1956). Nature, Lond. 178, 997.
- COLLARD-CHARON, C. & RENSON, M. (1963). Bull. Soc. chim. Belg. 72, 149.
- KUTZELNIGG, W. & MECKE, R. (1961). Spectrochim. Acta, 17, 530.
- LEWIS, J., NYHOLM, R. S. & SMITH, P. W. (1961). J. Chem. Soc. p.4590.
- MITCHELL, P. C. H. & WILLIAMS, R. J. P. (1960). J. Chem. Soc. p. 1912.

- NARDELLI, M., BRAIBANTI, A. & FAVA, G. (1957). Gazz. Chim. Ital. 87, 1209.
- NARDELLI, M., FAVA GASPARRI, G., GIRALDI BATTISTINI, G. & DOMIANO, P. (1966). Acta Cryst. 20, 349.
- NARDELLI, M., FAVA GASPARRI, G., MUSATTI, A. & MAN-FREDOTTI, A. (1966). Acta Cryst. 21, 910.
- PECILE, C., GIACOMETTI, G. & TURCO, A. (1960). R.C. Accad. Lincei VIII, 28, 189.
- PIOVESANA, O. & FURLANI, C. (1968). J. Inorg. Nucl. Chem. In the press.
- SWAMINATHAN, K. & IRVING, H. M. N. (1964). J. Inorg. Nucl. Chem. 26, 1291.
- YAGUPSKY, G., NEGROTTI, R. H. & LEVITUS, R. (1965). J. Inorg. Nucl. Chem. 27, 2603.
- YAMAGUCHI, A., PENLAND, R. B., MIZUSHIMA, S., LANE, T. J., CURRAN, C. & QUAGLIANO, J. V. (1958). J. Amer. Chem. Soc. 80, 527.

Acta Cryst. (1969). B25, 595

The crystal and molecular structure of dibromotetrapyrazolenickel(II), Ni(C₃H₄N₂)₄Br₂. By A.D.MIGHELL, C.W.REIMANN and A.SANTORO, Institute for Materials Research, National Bureau of Standards, Washington, D.C. 20234, U.S.A.

(Received 28 August 1968)

The crystal and molecular structure of dibromotetrapyrazolenickel(II), Ni(C₃H₄N₂)₄Br₂, was determined by single-crystal X-ray diffraction techniques. Ni(C₃H₄N₂)₄Br₂ crystallizes in the monoclinic system with $a=14\cdot127\pm0\cdot007$, $b=9\cdot334\pm0\cdot003$, $c=14\cdot702\pm0\cdot002$ Å, $\beta=118\cdot62\pm0\cdot03^{\circ}$, space group C2/c, $\varrho=1\cdot94$ g.cm⁻³ and Z=4. The structure was found to be very similar to that of dichlorotetrapyrazolenickel(II). The R value based upon 2104 observed reflections is 0.081.

Introduction

In dichlorotetrapyrazolenickel(II), Ni(Pz)₄Cl₂, the pyrazole (I) rings lie nearly parallel to the Ni–Cl direction

(Reimann, Mighell & Mauer, 1967) while in the related complex, dichlorotetrapyridinenickel(II), Ni(Py)₄Cl₂, the pyridine rings are inclined about 45° to the Ni–Cl direction (Porai-Koshits, 1954). In addition, the Ni–Cl distance is significantly longer in Ni(Pz)₄Cl₂ than in Ni(Py)₄Cl₂. Consequently the tetragonal distortion in the ligand field of the nickel ion is larger in the pyrazole complex than in the pyridine complex.

Dibromotetrapyridinenickel(II), Ni(Py)₄Br₂, has been investigated both structurally (Antsishkina & Porai-Koshits, 1958) and spectroscopically (Rowley & Drago, 1967). In view of the significant differences between the chloride complexes indicated above, dibromotetrapyrazolenickel(II), Ni(Pz)₄Br₂, was prepared so that it could be compared with the above compounds. Ni(Pz)₄Br₂ was found to have the same space group as Ni(Pz)₄Cl₂ with similar cell dimensions; this suggests that the gross structures are also similar. However, to compare these related complexes and to give a meaningful interpretation of their spectroscopic properties, it is necessary to determine bond distances and angles in the bromide complex. Therefore, the structure solution of Ni(Pz)₄Br₂ was undertaken.

Experimental and refinement

Crystals of Ni(Pz)₄Br₂ were grown from an aqueous solution of NiBr₂ and pyrazole. The crystal system and approximate cell parameters were determined from precession photographs taken with Cu K α radiation ($\lambda = 1.54051$ Å). The observed systematic absences are consistent with either Cc or C2/c. The centric space group was assigned on the basis of the complete structure determination. The 2 θ angles of seventeen strong reflections in the range 20–45° were measured with a diffractometer using Mo K α radiation ($\lambda = 0.710688$ Å), and the cell parameters were refined by least-squares analysis. The density was determined by flotation in a mixture of chloroform and ethylene dibromide. The crystal data are given in Table 1. For comparison, the cell dimensions of the related chloride complex, Ni(Pz)₄Cl₂, are also given.